120 research outputs found

    Changes of some blood indices and myocardial electrolyte content during hypokinesia

    Get PDF
    Using special hypokinetic cages, the volume changes of circulating blood, its hematocrit and protein content, volume ratios between extra- and intracellular liquids in the body, as well as electrolyte content in the blood and myocardium during hypokinesia were investigated experimentally in rabbits

    Experimental investigation of the role of thyrocalcitonin in the prophylaxis of disturbances in the water-salt and mineral metabolism during a 30-day hypokinesia

    Get PDF
    The effect of thyrocalcitonin (TCT) injections on the metabolism of water and electrolytes in free-moving and immobilized chinchilla hares is described. Calcium excretion from immobilized animals was elevated, but normalized in those also receiving TCT injections. TCT also normalized water content and excretion rates

    Errors in quantum optimal control and strategy for the search of easily implementable control pulses

    Full text link
    We introduce a new approach to assess the error of control problems we aim to optimize. The method offers a strategy to define new control pulses that are not necessarily optimal but still able to yield an error not larger than some fixed a priori threshold, and therefore provide control pulses that might be more amenable for an experimental implementation. The formalism is applied to an exactly solvable model and to the Landau-Zener model, whose optimal control problem is solvable only numerically. The presented method is of importance for applications where a high degree of controllability of the dynamics of quantum systems is required.Comment: 13 pages, 3 figure

    Optimal control of atom transport for quantum gates in optical lattices

    Get PDF
    By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both non interacting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.Comment: revised version: minor changes, 2 references added, published versio

    High Fidelity Quantum Gates in the Presence of Dispersion

    Full text link
    We numerically demonstrate the control of motional degrees of freedom of an ensemble of neutral atoms in an optical lattice with a shallow trapping potential. Taking into account the range of quasimomenta across different Brillouin zones results in an ensemble whose members effectively have inhomogeneous control fields as well as spectrally distinct control Hamiltonians. We present an ensemble-averaged optimal control technique that yields high fidelity control pulses, irrespective of quasimomentum, with average fidelities above 98%. The resulting controls show a broadband spectrum with gate times in the order of several free oscillations to optimize gates with up to 13.2% dispersion in the energies from the band structure. This can be seen as a model system for the prospects of robust quantum control. This result explores the limits of discretizing a continuous ensemble for control theory

    Quantum spin field effect transistor

    Get PDF
    We propose, theoretically, a new type of quantum field effect transistor that operates purely on the flow of spin current in the absence of charge current. This spin field effect transistor (SFET) is constructed without any magnetic material, but with the help of spin flip mechanism provided by a rotating external magnetic field of uniform strength. The SFET generates a constant instantaneous spin current that is sensitively controllable by a gate voltage as well as by the frequency and strength of the rotating field. The characteristics of a Carbon nanotube based SFET is provided as an example

    Carbon nanotube-based quantum pump in the presence of superconducting lead

    Get PDF
    Parametric electron pump through superconductor-carbon-nanotube based molecular devices was investigated. It is found that a dc current, which is assisted by resonant Andreev reflection, can be pumped out from such molecular device by a cyclic variation of two gate voltages near the nanotube. The pumped current can be either positive or negative under different system parameters. Due to the Andreev reflection, the pumped current has the double peak structure around the resonant point. The ratio of pumped current of N-SWNT-S system to that of N-SWNT-N system (I^{NS}/I^N) is found to approach four in the weak pumping regime near the resonance when there is exactly one resonant level at Fermi energy inside the energy gap. Numerical results confirm that in the weak pumping regime the pumped current is proportional to the square of the pumping amplitude V_p, but in the strong pumping regime the pumped current has the linear relation with V_p. Our numerical results also predict that pumped current can be obtained more easily by using zigzag tube than by using armchair tube

    Quantized Adiabatic Charge Transport in a Carbon Nanotube

    Full text link
    The coupling of a metallic Carbon nanotube to a surface acoustic wave (SAW) is proposed as a vehicle to realize quantized adiabatic charge transport in a Luttinger liquid system. We demonstrate that electron backscattering by a periodic SAW potential, which results in miniband formation, can be achieved at energies near the Fermi level. Electron interaction, treated in a Luttinger liquid framework, is shown to enhance minigaps and thereby improve current quantization. Quantized SAW induced current, as a function of electron density, changes sign at half-filling.Comment: 5 pages, 2 figure

    Charge-Stripe Ordering From Local Octahedral Tilts: Underdoped and Superconducting La2-xSrxCuO4 (0 < x < 0.30)

    Full text link
    The local structure of La2-xSrxCuO4, for 0 < x < 0.30, has been investigated using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data. The local octahedral tilts are studied to look for evidence of [110] symmetry (i.e., LTT-symmetry) tilts locally, even though the average tilts have [010] symmetry (i.e., LTO-symmetry) in these compounds. We argue that this observation would suggest the presence of local charge-stripe order. We show that the tilts are locally LTO in the undoped phase, in agreement with the average crystal structure. At non-zero doping the PDF data are consistent with the presence of local tilt disorder in the form of a mixture of LTO and LTT local tilt directions and a distribution of local tilt magnitudes. We present topological tilt models which qualitatively explain the origin of tilt disorder in the presence of charge stripes and show that the PDF data are well explained by such a mixture of locally small and large amplitude tilts.Comment: 11 two-column pages, 11 figure

    Exact SO(8) Symmetry in the Weakly-Interacting Two-Leg Ladder

    Full text link
    A perturbative renormalization group analysis of interacting electrons on a two-leg ladder reveals that at half-filling any weakly repulsive system scales onto an exactly soluble Gross-Neveu model with a hidden SO(8) symmetry. The half-filled ground state is a Mott insulator with short-range d-wave pair correlations. We extract the exact energies, degeneracies, and quantum numbers of *all* the low energy excited multiplets. One energy (mass) m octets contains Cooper pair, magnon, and density-wave excitations, two more octets contain single-particle excitations, and a mass \sqrt{3}m antisymmetric tensor contains 28 "bound states". Exact single-particle and spin gaps are found for the lightly-doped (d-wave paired one-dimension Bose fluid) system. We also determine the four other robust phases occuring at half-filling for partially attractive interactions. All 5 phases have distinct SO(8) symmetries, but share S.C. Zhang's SO(5) as a common subgroup.Comment: RevTex, 35 pages with 15 figure
    • …
    corecore